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The quantum numbers of the higher resonances in pion-nucleon scattering belonging to the nucleon and 
3-3 isobar trajectories are shown to arise from the exchange of the nucleon and pion-nucleon resonances 
themselves. In particular the members of the nucleon trajectory are created principally by forces due to the 
exchange of members of the 3-3 isobar trajectory and vice versa. The quantum numbers obtained from 
dynamical considerations agree completely with those conjectured on the basis of Regge pole considerations. 
The dynamical scheme is approximately symmetrical under interchange of the two trajectories. 

INTRODUCTION 

TWO dominant trends are discernible in recent 
efforts to unify the theoretical discription of 

elementary particles and resonances. One approach1,2 

groups particles of different angular momentum but 
identical internal quantum numbers together into 
families, the members thereof constituting the observ
able points on "Regge trajectories." On the other hand, 
the similarities of particles of the same spin and parity 
(e.g., the eight baryons) suggests the existence of an 
underlying symmetry, as exemplified3 by the " eightfold 
way." While both of these approaches are very promis
ing, there has not been much understanding of the role 
of dynamics in these theories, although some suggestive 
work has been done by Capps,4,5 Cutkosky,6'7 Sakurai8 

and others. It seems very important to discover which, 
if any, symmetries and regularities of Regge trajectories 
are determined dynamically. 

The present work is a continuation of two previous 
papers9,10 in which a scheme for the dynamics relating 
the members of the nucleon and 3-3 isobar trajectories 
was proposed. There it was shown that the observed 
pattern of quantum numbers can be understood 
qualitatively by means of the constructive collaboration 
of the forces due to exchange of the baryonic states 
themselves. The forces responsible for the existence of 
the members of the nucleon trajectory arise principally 
from the exchange of the members of the 3-3 isobar 
trajectory, and vice versa. We thus obtain "coupled," 
mutually dependent trajectories, a circumstance we 
expect to find in the resonance spectra of other strongly 
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interacting particles. To emphasize this interdependence 
we call the six observed physical states of the nucleon 
and isobar trajectories a constellation of resonances. 
One of the most interesting results is the qualitative 
invariance of the dynamical scheme underlying the 
constellation to reflection about the horizontal axis 
(Fig. 3). This result generalizes the "dynamical equiva
lence" of the nucleon and the 3-3 isobar discussed 
by Chew.11 

It should perhaps be mentioned that none of the 
present analysis depends on continuations in the 
angular momentum, so that one really need not mention 
the concept of Regge trajectories. However, the physical 
situation is very similar to that suggested by the 
situation in potential scattering, which considerations 
led to the present work. In a sense, the existence of 
Regge trajectories in the direct channel is a trivial, 
a posteriori, result. We have not treated the exchanged 
states as Regge poles, mainly because of the enormous 
increase in the already burdensome computational work. 
Perhaps such a refinement eventually will be desirable. 

In order to avoid being overwhelmed by the enormous 
number of angular momentum states demanding atten
tion, we have pruned the theoretical apparatus to a 
minimum. We start from fixed-momentum transfer-
dispersion relations12 and examine the influence of 
resonances in the crossed channel. The observed set of 
quantum numbers is seen by inspection of the crossing 
matrix to be the most favorable situation so that when 
examining a given partial-wave amplitude we treat the 
crossed channel as experimentally known. We find then 
that the "forces" due to the exchange of baryonic 
resonances become large in the appropriate states at 
about the right energy for the above mentioned reso
nances. The proper ordering is obtained automatically, 
isospin-J states lying lower in energy than isospin f, es
sentially because the exchange of the latter gives stronger 
forces in isospin ^ than the other way round. In par
ticular, the order of magnitude of the slope of the trajec
tories is understood automatically when it is recognized 
that centrifugal barriers associated with baryon ex
change forces are involved. Nor is the approximate 

11 G. F. Chew, Phys. Rev. Letters 9, 233 (1962). 
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constancy of slopes a surprise although the precise 
calculation of resonance energies requires the specifica
tion of all significant forces. The calculation of reso
nance energies on the basis of the present model is 
deferred to a subsequent paper. The possibility that 
3-3 isobar exchange gives rise to a P1/2 isospin § reso
nance near 900 MeV suggested by Feld and Layson13 is 
discussed in Sec. IV. This resonance, if substantiated by 
further work, would signal the beginning of a second 
trajectory with the quantum numbers of the nucleon. 

The situation in the D states is considerably more 
complicated owing to the presence of forces of opposite 
signs and different ranges. In particular, the possibility10 

of a bootstrap operating between the 600-MeV res
onance and the 850-MeV shoulder should be viewed 
with suspicion pending a more thorough investigation 
of the inelasticity that is so prominent in these phenom
ena. It has been thought for some time that the 
strong inelasticity (irN —> 2irN) is responsible for the 
600-MeV maximum. Since it is difficult to treat properly 
the inelasticity (except of course in the crossed channel) 
in the present framework we do not discuss this state 
(nor the very inelastic 850-MeV "shoulder") in any 
detail in this paper, although in Sec. V we shall review 
previous theoretical work in the light of our results. 

Thus the present work is incomplete in that proper 
account has not been made for the strongly coupled 
three-particle channels. We believe, though, that for 
the even parity maxima the essential forces are created 
by the exchange of baryonic states. The details, and in 
particular the resonance energies may be changed 
somewhat by inelasticity and the exchange of mesonic 
systems. Recent progress in the mathematical descrip
tion of the inelastic channels by Cook and Lee,14 Ball, 
Frazer, and Nauenberg,15 Mandelstam et a/.,16 and 
Hwa17 can be utilized for this aspect of the problem. 
One refinement, the use of the Mandelstam representa
tion (along the lines sketched by Frautschi and 
Walecka18 for the 3-3 resonance) instead of the more 
primitive fixed momentum transfer dispersion relations, 
is already in progress.19 We should like to emphasize 
that the results of the present investigation cast doubt 
on any theory of production amplitudes which neglects 
the exchange of baryonic states. Previously such forces 
usually have been neglected on the basis of their short 
range. We find, though, that when these short-range 
forces (which are after all quite strong) act in consort 
they are quite important. 
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All the members of the constellation are compatible 
with the "spin-orbit rule" discussed by Kycia and 
Riley.20 However for odd parity resonances the present 
theory is almost certainly incomplete so that no fair 
comparison can be made. The finer details of the rule 
do not agree with our results, although this fact is 
scarcely significant. For example, although Fy2 isospin 
I is repulsive in accordance with the rule, F5/2 isospin f 
is slightly attractive. The origin of such results is 
explained in Sec. III. 

A most interesting question, now under investigation, 
is whether the pion-hyperon resonances can be similarly 
correlated. One can, in optimistic moments, hope that 
by such calculations the meaning of such concepts as 
isotopic spin will be dynamically determined in as 
simple a way as (for example) the symmetry of crystals. 
(Of course to calculate the symmetry of a given 
crystal is often very difficult, but nobody is suprised 
that crystals exist, or that their symmetry has a 
decisive influence on their physical behavior.) For 
example from the present work one can see that isospin 
f is energetically unlikely for a Pi/2 nucleon. Moreover, 
without isospin one would not have a 3-3 resonance to 
"bind" the nucleon via Chew's reciprocal bootstrap. 

Readers uninterested in computational details are 
advised to skim Sec. II and then go directly to Sec. IV. 

II. BASIC EQUATIONS 

The kinematical formulas required for the analysis of 
pion-nucleon scattering have been given in many 
places.12,18 Because our work depends in a crucial way 
on the detailed isospin, angular momentum structure 
of the problem we shall summarize here enough results 
to make the paper reasonably self-contained. The 
initial and final pion four-momenta are labeled q\ and 
q2; for the initial and final nucleon four-momenta we 
write pi, pi. From these four vectors one forms the 
usual invarient variables s= (pi+qi)2, u— (pi—qz)2 and 
t= (qi—qi)2. s, u, and — t are, respectively, the squares 
of the cm. total energy, "crossed" total energy, and 
momentum transfer. We express all quantities except 
laboratory pion kinetic energy in terms of the positive 
pion mass, /x. [We suppose all pions to have the same 
mass (/x) and take both nucleons to have the proton's 
mass M=(6.72/z).] For computational purposes it is 
useful to note that M2=45.16M2 , (Af2-M

2)2= 1950.0 p2, 
and $= (59.60+0.0963 TL) M2, where TL is the lab 
pion kinetic energy in MeV. Introducing the cm. 
momentum k and the cosine of the scattering angle 
x~cos$> one finds the following useful relations: 

s+t+u==2(M2+n2) , I2-1) 

/ = - 2 & 2 ( l - # ) , (2.2) 
^ = = i ^ i ( M 2 + M 2 ) + ( M 2 _ M 2 ) 2 / 4 ^ (2.3) 

The total cm. energy (^)1/2 is called W. The cm. 
2°T. F. Kvcia and K. F. Riley, Phys. Rev. Letters 10, 266 

(1963). 
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nucleon total energy is then £== (s+M2—fx2)/2W. The 
invariant amplitude u(p2)Tu(pi) may be expressed in 
terms of the two invariant functions A(s>tyu) and 
B(s,t,u) by 

T~-A+h<qi+q*)B. (2.4) 

It is customary to regard T as a matrix in the nucleon 
isospin space. The simplest crossing properties are 
possessed by the amplitudes A ̂  B± defined in terms of 
the amplitude for a pion of charge state i scattering to 
charge state j (i, j ~ 1, 2, 3) by 

BJi=5iiB++i[Tj,Ti]Br 

(2.5) 

(2.6) 

The n are the 2X2 Pauli isospin matrices. 
The crossing symmetry connecting the channels 

where s and u are physical is then expressed by 

A±(s,t,u) = ±A±(u,t,s). 

B±(s,t,u) = :=FB±(u,t)s). 

(2.7) 

(2.8) 

We find it more useful to work with isospin-diagonal 
amplitudes. The appropriate projection operators are 

zTjTi, 

(2.9) 

(2.10) 

The connection between the plus-minus amplitudes and 
the isospin amplitudes AT (T signifies isospin) is 

^ + = 1 ( ^ 1 / 2 + 2 ^ 3 / 2 ) ; 

A-^iiAW-A3*). 

(2.11) 

(2.12) 

The differential cross section is given by da/dU 
— \ Tr( /+ / ) where / is given in terms of the "direct" 
amplitude /i+ff/2 and the spin flip complitude /2 by 

/=/l+€T-#2<r-£l/2, (2.13) 

where &=qi/gv. In terms of the partial-wave amplitudes 
fi±=[exp(2i8i±) — l']/2ik for states of angular momen
tum j=l±% and parity (— l)1 we have 

1 

ft=T,(fi--fi)Pi'(x). 
1 

Equations (2.14) and (2.15) are inverted by 

1 /-1 

fl±=- / dxlhPM)+UPi±x(x)-]. 
2J-i 

(2.14) 

(2.15) 

(2.16) 

/ i and ji are related linearly to A and B (of the 
appropriate isospin) by the matrix a(s): 

( ; > < > 
(2.17) 

1 / (E+M) (E+M)(W-M)\ 

STTWK- (E-M) (E~M)(W+M)/ 

We adhere to the inaccurate custom of calling I the 
"orbital momentum'' although the label / ± signifies 
more precisely the total angular momentum and 
parity of the state. (Although l2 is not conserved, the 
centrifugal barrier of a state is determined by I rather 
than / .) For each value of /, then, one has to consider 
two values of j and two values of isospin T. To keep 
track of all these states, we use a "spectroscopic" 
notation (1)'>T,2J in accordance with established practice 
in low-energy pion physics. For instance the low-energy 
j=:T—%, £-wave resonance is in our notation labeled 
^ 3 3 . 

It is also useful to express f(6) in terms of angular 
momentum projection operators £h±(<Z2,<Zi): 

<^+(<Mi)= (l+l)Pi(x)-iv-bX4iPi'(x), (2.19) 

3UMd=lPi(*)+n'4*X4iPi'(*)- (2-2°) 

f(6) is then given by 

f(o)=ZUid*(Mi)+f^UMi)l- (2.21) 
I 

We often use various crossing matrices. For isospin 
we have the two operators Ia, where a = 1, 2 corresponds 
to r = | , f (i.e., isospins antiparallel or parallel). We 
can express I if (crossed indices) in terms of the /,-/ 
with the indices in the proper order by means of the 
isospin crossing matrix Map: 

where Mf is the transpose of the matrix M 

1 / -1 4\ 

3 \ 2 1/ 

(2.22) 

(2.23) 

We have written (2.22) in an unnatural way (transpose 
of M) so that in the dispersion relations M appears in 
a matrix product in a natural way. In the same way we 
consider Eqs. (2.19) and (2.20) for given /; write 
cI<*(<Z2,$i), where a = l , 2 corresponds to j=l—% and 
i = J + ! (antiparallel and parallel spin and orbital mo
mentum). The "crossed" projection operator ^a(qi,qd 
is then given in terms of the $p($2,$i) (for the same I) 
by the "static" (see below) angular momentum 
crossing matrix Nap: 

#«(2i>$2) = E Nap'Mfeii), 

where TV is the transpose of 

1 / - l 2/+2\ 

1+1V2/ 1 / ' 2/+lx 

(2.24) 

(2.25) 

We have called N the "static" crossing matrix because 
in the heavy mass limit, where exchange of an object 
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with given j , I only couples with states of the same /, 
(2.25) is the complete crossing matrix. 

For the complete characterization of a state in terms 
of T, J, I we write the projection operators 

<Pr(k',k) = Ik>tk
T$hk(k',k)9 (2.26) 

where /x=l> 2, 3, 4, corresponds to T—\, j=l—%; 
T=h, j=l+h T=%, j=l-i; r = f , j=l+h, respec
tively. On the left of (2.26) k', k stand for all the 
relevant (charge and angle) variables. The complete 
static crossing matrix A^ is given by 

where A' is the transpose of A : 

' 1 - ( 2 / + 2 ) - 4 4(2/+2) 

-21 - 1 8/ 4 

- 2 2(2/+2) - 1 2 /+2 

(2.27) 

A=-
1 

3 (2 /+ l ) 

4/ 2/ 

(2.28) 

The contribution of crossed wN scattering to the 
amplitude /M(co) is then, in the no-recoil limit 

L-u Afiv 

1 f" /k\*lTmfw(<a') 

TT], \kf) co'-
•dJ, (2.29) 

a straightforward generalization of the familiar crossed 
term of the Chew-Low theory.21 In Sec. I l l we discuss 
in detail the physical consequences of Eq. (2.28), or 
more precisely, its relativistic refinement. Here we only 
note that from (2.29) one can find the effect of a sharp 
resonance in state v\ on the scattering in the states n 
(of the same /) by inspection of the *>ith column of 
(2.28). For example, exchange of the 33 resonance gives 
the following coefficients A^ for the states P n , Pn, 
PiU P33, respectively: 16/9, 4/9, 4/9, 1/9. 

The entire discussion is based on the fixed-momentum 
transfer dispersion relations 

A±(s,t)-
1 r dsr 

TV J S' — S 
ImA±(s/t) 

1 r duf 

7r J u'—u 
• l m i ± « 0 , (2.30) 

/ 1 1 A 1 r dsf 

BHs,t) = gH =F ) + - / ImB±(5',i 
\M2-s M2-u/ TJ S'-S 

1 r duf 

=F- / 
7T J U' — U 

•ImB±(u',t). (2.31) 

g2 is the renormalized TT—N coupling constant ^2/4x 
= 15. In these equations the integrations run from 

21 G. F. Chew and F. E. Low, Phys. Rev. 101, 1570 (1956). 

(M+n)2 to 00. We suppose that the /-dependent terms 
which must be added to [(2.30)-(2.31)] are adequately 
represented22,23 by the p exchange contribution (and 
possibly some T=0 TT—TT exchange). Since we are 
interested mainly in high partial waves (D through H), 
the p exchange contribution, estimated in Appendix B, 
turns out to be small. We ignore the T=0 irw interaction 
entirely, since exchange of such states cannot dis
criminate between T—\ and f ir—N scattering. 

The nucleon pole in l/(M2—s) (2.31) contributes 
only to the J~\ amplitudes and will be dropped except 
insofar as it is germane to our discussion of bootstrap 
mechanisms. 

The pole at u=M2, due to nucleon exchange, is 
very important. In terms of isospin amplitudes j3poie

1/2 

= g2/(M2-u), BpolV
2=-2g2/(M2-u). In order to 

obtain simple formulas for the partial-wave contribu
tions of the pole and ^-channel terms it is helpful to 
rewrite the denominators of the form w—u using 
Eqs. (2.1)-(2.3) as 

w-u=2k2(y+x), (2.32) 

y=l+(w-u0(s))/2k2. (2.33) 

x is again the cosine of the scattering angle and UQ(S) 
= (M2—fx2)2/s is the value u takes along the line cos0s 

= — 1. We shall make frequent use of the expansion24 

1 

w—u 

1 00 

— E(2l+l)Pi(-x)Qi(y). 
2k21=0 

(2.34) 

The centrifugal barrier find its mathematical realization 
in terms of the Q functions. 

For w—M2 in Eq. (2.32) we find the "Born approx
imation" phase shifts from Eqs. (2.16), (2.17) for 
isospin \ 

di±
B=(g2/16wkW)l(-l)l(E+M)(W-M)Ql(y) 

+ (-l)M(E-W(W+M)Qi±i(y)-]. (2.35) 

For isotopic spin f, Eq. (2.35) is to be multiplied by 
— 2. The sign of the phase shift is determined by the Q of 
lowest index, despite the difference in size of the two 
coefficients of the Q functions in (2.35). For odd /, states 
with minimum T and / ( | and l—\) and maximum T 
and / ( | and / + | ) are attractive while the other states 
are repulsive. For even / the pattern is reversed. The 
largest phase shift occurs for the "stretched" configura
tion of angular momentum and isospin vectors since 
then the largest Q occurs with the largest coefficient. 
Thus the Born terms give strong attractions in P33, 
Fs7,Hz,iv" and strong repulsions in #35, G39, •••. 
Further discussion and numerical results are given 
below. 

™ M. Cini and S. Fubini, Ann. Phys. (N. Y.) 10, 352 (1960). 
23 J. Bowcock, W. N. Cottingham, and D. Lurie, Nuovo Cimento 

16, 918 (1960). 
24 E. T. Whittaker and G. N. Watson, Modern Analysis (Cam

bridge University Press, New York, 1952), 4th ed., p. 321. 
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In the following we do not write the pole terms 
explicitly. Using relations (2.11)—(2.12), one finds 
dispersion relations for the isospin amplitudes: 

4 >(*,*) = -
1 ds' 

•ImA'is'j) 

k w 

dur 

• lm4* (*',#, (2.36) 
u —u 

Bj(s,i) = -
dsf 

• ImBi(sf,t) 

- E Mjt 

1 du' 
ImBk(u',t). (2.37) 

u —u 

The coefficients of the isospin crossing matrix are given 
by Eq. (2.23). From these equations one can find ft 
and /2 and in turn equations for the partial-wave 
amplitudes. This problem is discussed in the following 
section. 

III. COUPLING OF PARTIAL-WAVE AMPLITUDES 

In order to find the partial-wave dispersion relations 
we convert the simple equations for the invariant 
amplitudes to those for /iy, /2y. From Eqs. (2.17)—(2.18) 
and (2.36)-(2.37) one gets 

\f«(s,t)/ TJ S'-S \hAs'i)/ 

1 du' //i*(w',0 
D(s,u') Im( 

u'—u \fzk{u',t) 

where the matrices C and D are given by 

C(s,s') = a(s)a-\s') , 

D{s,s')^u(s)azorl{s'), 

(3-D 

(3.2) 

(3.3) 

where as is the diagonal Pauli spin matrix. Explicitly 
C(v ' ) is given by 

r(W+W')(E+M) (W-W')(E+Mh 

C(s,s')-
2W(E'+M) 2W{E'-M) 

(W-W')(E-M) (W+W')(E-M) 

2W(E'+M) 2W(E'-M) 

• (3.4) 

Instead of writing out the full expression for D(s,s') we 
find it convenient to separate D into two parts: 

D(s/)=&(s/)+D2(s/), (3.5) 

Dl(s,s') = C(s,s')<r3, (3.5a) 

i?8(vO=«W[^,-tf-1(jO]; (3.5b) 

except for the 12 element, the elements of D2 are 

substantially smaller than those of D1. D2 is given by 

(W-M) (E+M) (W'-M) (E+M)~) 

D2(s/)--
W(Er+M) 

(W+M)(E~M) 

W(E'+M) 

W{Ef-M) 

{W,-M){E-M) 

W{Ef-M) 
(3.6) 

We are especially interested in the effect of res
onances in the crossed channel, i.e., what forces are 
generated by the exchange of various ir-N "isobars?" 
(We shall find such forces to be essential in generating 
the resonances themselves.) Thus we represent the 
scattering amplitude under the integrals by the usual 
truncated Legendre series, Eqs. (2.14)—(2.15). The 
cosine xf of the scattering angle at energy sf and momen
tum transfer t is related to that {%) at energy s and 
momentum transfer t by 

x' = &+a;' £ = k2/(k')\ a = l - £ . (3.7) 

For brevity, we label an / amplitude with a prime 
whenever it refers to the ($', /) variables. A given 
Legendre function Pi(x') under the integral can be 
expressed as a sum of Pn(%) where n runs from 0 to I 
using identities given in Appendix A. This procedure 
simplifies and systematizes the task of working out the 
partial-wave projection of the right-hand side of Eq. 
(3.1). 

We now discuss in detail the first (" direct") term in 
(3.1). From (3.1) and (2.16) we find, suppressing the 
diagonal isospin index, 

1 / ds' 2 

+ C 2 i ( / / ) ^ ] ; (3.8) 

(3.9) 

T J s—s y=i 

C/ /CO)^- f dxPl{x)f/{s'1x
f) 

Throughout the following it is assumed that the 
influence of waves of orbital momentum V>1 can be 
neglected where / is the orbital momentum of the state 
of interest. (This assumption is valid for F, G, H states 
but not D. See Sec. IV.) It follows immediately that 
Cu does not contribute to (3.8), since f2f(XPi'~i(x) 
H , where + • • • denotes ?n 's of order lower than 
/'— 1. Similarly no partial wave with V <l can contribute 
to fid in the Cu term. For V—l—\ there is a C21 contribu
tion to (fi)1-1 (for i = l - | ) from the / = / ' + ! ampli
tude. However C21 is extremely small (C2i<k2/SM2) 
even at a pion lab energy of a BeV. We ignore C21 
henceforth. [For V<l—\ there is no C21 contribution to 
fi±d(s)-l Thus, with the neglect of the very small 
coefficient C21, we have found that terms in / ' with 
V <l do not contribute to fi±. Using the definition (3.9) 
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and the results of Appendix A, we find 

1 r dsf /k\n 

/* '(*) — / - 7 — ( - d i ( v ' ) ImfaV), (3. 
wJ s—s\k/ 

10) 

fi-d(s)-
ds' /k\il-2 

1 r ds' / k\ 

TJ s'-s\k'J 

1 r ds' /k\il 

rj s'-s\k'/ 

C«(*/) Tm/^(/) 

X (I-C22/CU?) I m / ^ ' ) . (3.11) 

From (3.4) it is observed that Cu is practically unity 
and C22= (E'+M¥(Cu£)/(E+My is nearly £Cn (for 
$=s', C n = l and C22=Cn). Even for s' rather different 
than s these approximations are fairly good. Moreover, 
in applications the contributions of s' nearly equal to s 
are especially significant for l' = l. Although it is not 
difficult to carry along the exact factors in (3.10)—(3.11) 
we shall write these equations in the compact approx
imate form 

1 r ds' / k\2t 

fi±d(s) = - / — ( - ) I m / ! ± ( / ) . (3.12) 

[The relation to the static nucleon theory is direct, 
since dsf/(s'—s)=zdG>L/(o)L—o)L)>2 I*1 Fig. 1, Cu, 
CiiJ^, and C\\—Ci%l^ are plotted for representative s 
and sr. It is clear that if Im/z_ is very small but fi+ 
resonant then (3.12) will be a poor approximation to 
(3.11). But in this case the contributions of the other 
terms in (3.1) will be more important than the direct 
term. 

We now turn to the more complicated analysis of the 
" crossed'' contribution [the second term on the right-
hand side of Eq. (3.11)] to the Zth partial waves (ff). 
Again we ignore contributions to / ' having V>1. The 
essentially new feature of this term as compared to the 
direct term [apart from the substitution of D(s,s') for 
C(s,s')~] is the occurrence of the angular dependence 
in the denominator {u'-—u)~~l. In our work this quantity 
has the physical significance of the propagator of the 
exchanged baryonic resonances. The angular depend

ence permits states of arbitrarily small V to contribute 
to fic. To find these contributions we expand the propa
gator in a "multipole expansion/' Eq. (2.34). Frequent 
use is made of the following essential property of the Q 
functions: For arguments y relevant to the kinematical 
variables in the region of the higher resonances the Q 
functions decrease rapidly with increasing index. 
Physically the Q functions represent a centrifugal 
barrier effect. For example if /=3 , //==1, the P^ term 
of (2.34) is the lowest that contributes to the F state 
(/=3). The factor Pi(%), which represents the minimum 
orbital momentum (2 units) needed to supplement the 
1' spin" of the exchange p state to give an F-state contri
bution, is accompanied by a centrifugal barrier (Q2) 
appropriate to V—2, The ^-state angular factor occurs 
in the numerator and is not inhibited by a centrifugal 
barrier. The height of this barrier is determined by the 
average mass (s')1^2 of the exchanged state. The factors 
governing the relative importance of the exchange of 
small Z' states are thus (a) the mass of the exchanged 
object and (b) the order of the Q function. However it 
is not true that one can terminate the series as soon as 
the first (lowest index) significant Q contribution is 
found; because of the structure of D(s,s') it is essential 
to keep the next higher index Q as well to obtain all 
contributions of the same order of magnitude. All these 
remarks are clarified by the explicit calculations carried 
out below. 

We first discuss the contribution of the / '= / compo
nent of / ' to fc. The non-negligible contribution comes 
from the term Qo—3xQi in the expansion (2.34). The 
analysis of the angle-independent Qo term parallels 
the discussion of fd. Neglecting D21 as we did C21, the 
<3o contribution is 

/fi-c(s)\ I f / * ; -«o \ 

\Uc(s)/ 2wk2J \ 2k' / 

XA«(s/)[ — J Im ) (3.13) 
\k'J \U(s')J 

leaving implicit the isospin sum implied by (3.1). A0 

is given by 

A°(s,s') = 

(2M+W-W')(Ef+M) (W+W')rE+M E'+M-] 

A s -

2W(E+M) 

<W-M\/E+M\ / 

/\E'+M/\ W 

2W LE'+M E+M-

(2M+W'-W)(E+M) 

2W(E'+M) 

W'-M\/E'+M\ 

W A E+M/ ' 

+A 

(3.14) 

(3.15) 

In Fig. 2 we have plotted the elements of A0 as functions 
of W for an especially interesting case, PF'=TF33=8.86. 
The general features are given by the special case 

W=W: 

A°(s: 
M/-1 2\ 

> s ) ^ o 1) 
(3.16) 
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FIG. 1. Some relevant coefficients of the matrix C of Eq. (3.4) 
are plotted for W equal to the value Wzz appropriate to the 
3-3 resonance. 

which gives the appropriate " static' ' limit 

1 2\ 
^°s -c; ;)• (3.17) 

I t is noted that A120, an especially important coefficient, 
is fairly close to the static value (2). Before discussing 
the remaining coefficients we consider the second term 
— 3xQi which gives rise to the I dependence of the 
crossing matrix. 

The contribution of the Q\ term to fi±
c is 

/ l ± ' « = -
2wk2 

r / s'—u0\ 

X l m Z [ 0 y ( * / / ) ' + 0 « ( * / / ) , ± , 3 . (3.18) 
j - i 

Neglecting Dn we find that (3.18) reduces to 

2irk*J \ 2k* / IL 

Wv. 

(2/+l)f 

+ 
( ; - i ) ( i - t )D M -

? 
[/*_(*')-/*+(/)] 

+lDu(l-Qr1Msr) • (3-19) 

2 r f J V 2£2 / 

Xlm 
1 ( 1 - * ) • IDn 

~-Dnfl+(s'n (2/+l)f 

(3.20) 

The Du terms in Eqs. (3.19)-(3.20) are the largest for 
£ < 1 . First of all for the substantial energies of interest 
DM is about an order of magnitude bigger than Du or 

Dn- Secondly, one is concerned here with waves of the 
same I, so that %=k2/(k')2 is of order unity in the 
relevant energy range. For £ > 1 , (£—1)/£2 has a 
maximum value of 0.25. Thus to better than, say 10%, 
one has for the Qi term 

Kfi+'J 2irk*J \ 2W- / 

X411 (* / ) (—) Im( ) , (3.21) 
\k'J Kfi+isV 

3yQi(y)\/-D12(s,s') 

V Qo(y) A 2£y 

X 
\ 2 / + l / \ l - 1 / 

(3.22) 

The grouping of terms in (3.17) is motivated as follows: 
To a very good approximation one may replace Qi by 
its asymptotic form Qi=Qo/3y. For s' appropriate to 
the P33 resonance, SQiy/Qo is 1.05 at TL~\ BeV and 
1.1 at 2 BeV. For s' appropriate to the Fu resonance 
the deviation from unity is less than 0.01 for TL~ 1 BeV 
and about 0.04 for TL=1 BeV. (This approximation is 
not necessary, but makes the form of the resulting 
equation more transparent.) The factor —Dn/2%y is 
just unity in the static limit as can be seen by writing 
y in the form 2M(o)L+^L)/2k2— 1 (coL is. the pion lab 
energy) and neglecting the — 1: 

D12 /W+W'-2M\/E+M\/Ef+M\ 

2ty \ a>L+coL' A 2W A 2M 
(3.23) 

Thus the "static" crossing matrix given by Eq. (2.25) 
is an approximation to the sum A°+Al given in Eqs. 
(3.15) and (3.17); in the heavy mass limit we have 

/ - l 2\ 21 / l - 1 \ 
A°+A^( )+ ( ) (3. 

V 0 1/ 2/+1V1 - 1 / 

24) 

12 14 16 
TL (MeV/lOO) 

FIG. 2. The energy dependence of various components of the 
crossing matrix is depicted for W' — Wzz* The corresponding 
"static" values are An° = 2} ,423°= - - 4 u 0 a B - Z W 2 & > = l . 



B504 P . C A R R U T H E R S 

which yields just Eq. (2.25). The qualitative features of 
the static crossing matrix persist in the energy-depend
ent crossing matrix A=A°+A1. 

Figure 2 shows the behavior of — Du/{2%y) as a 
function of W for Wf fixed at the P 3 3 resonance value. 
For other values of W [e.g., W'=W, V^ = W(Fn)~] 
the curve may be lowered by as much as 10% at low 
values of W. When — Du/(2£y) is multiplied by the 
correction 3Qiy/Qo, the curve almost coincides with 
that for A n°. Thus the crossing matrix elements [Eq. 
(3.15) plus Eq. (3.21)] are affected by kinematical 
corrections as follows. An is essentially the same as the 
static value but scaled down by the factor |^4n°| 
^ | Dn | /2£y. This element is rather small in any case 
due to the near cancellation between 4 n ° and An1 

[see Eq. (3.21) for the static value]. In the static A, 
A 22 is very small due to cancellation; this cancellation 
is even more complete in the present case. For large 
W(TL>1 BeV) A22 may become slightly negative. 
Since A 2i°=0, A 2i is given by the static value reduced 
by the factor (3yQi/Qo)(—Dn/2£y) shown in Eq. 
(3.21). This amounts to about 35% reduction at 900 
MeV lab energy (Fig. 2) for P 3 3 exchange. Ai£ is 
rather smaller than the static value, as is An1, which 
has a smaller negative value and therefore compensates 
somewhat the decrease of A^. If we consider mod
erately large £, then the D\\ term in (3.19) tends to 
cancel the Du term. Thus for large £ (A1)^ is smaller 
than given by (3.22) so that An is roughly equal to 
A i2°, which is not very different from the static value 
of A12. In summary, the unimportant diagonal terms 
are reduced to values even smaller than their " static" 
values. The effect of exchanging a ./ = / + § object on a 
jz=l—\ state and the effect of exchanging a j—l—\ 
object on a j=l+i state is decreased character
istically by 20-30% for typical choices of kinematical 
parameters. 

I t is appropriate to summarize the results obtained 
thus far before deriving the contributions due to the 
exchange of low partial-wave resonances. By neglecting 
contributions with V>1 and neglecting certain small 
kinematical factors we have found the approximate 
partial-wave dispersion relations 

1 r ds' /k\n 

7T J S — S \ k / 

1 r / s'-u0\/k\21 

+ £ dsfQdl+ )(-) 
2wk2 v J \ 2k2 Ak'/ 

.XA,„(s,s')1mfl9(s'). (3.24) 

One still has to add to (3.24) the contribution of the 
pole terms [Eq. (2.35)], p exchange (Appendix B) and 
the yet-to-be-found contributions of partial waves with 
V<1. Equation (3.24) shows that coupling of states of 
the same I is very similar to that obtained using the 
static crossing matrix, Eq. (2.28). In particular the 

large components Au and A a are especially relevant 
for the operation of the bootstrap mechanism for 
arbitrary /, as discussed in a previous note.9 We defer a 
discussion of the physical content of Eq. (3.24) to 
Sec. IV. 

We next consider the effect of states in the crossed 
channel having V<l. As in the preceding case, one 
cannot terminate the series at the first nonzero contri
bution Qn (n=l—V). Here too, part of the Qn+i term 
gives a contribution of the same order of magnitude. 
In fact, by a slight modification we can take over the 
results found above for l' = l. Consider the sum 

1 f / s'-u0\ 
Z(~l)n(2n+l)Pn(x) ds'QJl+ 

2ick*J \ 2k2 / 

/ f \ 
D(s,s') Im( J . (3.25) 

V 2 / 

Consider the n and (n+l) terms; using identity (Al), 

(2n+l)Pn(x)Qn-(2n+3)Pn+1(x)Qn+1 

= ( 2 » + l ) P n ( * ) { e » - C ( 2 » + 3 ) / ( » + l ) ] a ^ n ^ l } 
+ constPn- i (x) , (3.26) 

where the term constPw-i does not contribute for 
n=l~-V. Dropping P„_i, we note further that because 
of the asymptotic form appropriate here, Qn+i(y) 
^(n+l)Qn(y)/(2n+3)y Eq. (3.26) is effectively 

(2n+l)Pn(x)Qn(y)(l~x/y), (3.27) 

in exact analogy to the case V—l. As there we need not 
commit ourselves to the approximation (3.27) but can 
insert the ratio Qn+i/Qn explicitly in the crossing matrix. 
In the case lf=lwe learned that the angular momentum 
composition of (1 — x/y)f/ is given by the second term 
of (3.24) (for / - > / ' ) • Thus the n and (n+1) terms of 
(3.25) contribute to /i+cr-qyt-qiji the amount (recall 
that we are taking one value of V in the / / amplitudes 
and systematically dropping angular factors that do not 
contribute to fi): 

1 /• / s'—Uo\ 
( - l )» (2»+l )P B ( aO dsfQJl+—— 

2irk2J \ 2k2 / 

/ k\21' 
X E & ( & , $ I M M / ( V O ( - ) Im/ , (* ' ) , (3.28) 

where the indices /*, v and the crossing matrix A^1' 
refer to orbital momentum V [more precisely A^ will 
differ slightly from that used before in that 3Qi/Qo 
will be replaced by a different ratio, discussed above 
Eq. (3.27)]. I t is then straightforward to compute the 
coefficient of $z±(g2,<Zi) occurring in the product 
Pt-i'(%)3i±($2,Qi). The general crossing matrix will then 
involve in a crucial way the coefficients Cn(l,l'', v>fi) 
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defined by 

To illustrate the simplicity of the procedure, we work 
out in detail the contribution of P33 exchange to the 
F waves. First note that the exchange of isospin f leads 
mostly to isospin \ since the second column of the 
isospin crossing matrix, Eq. (2.23) gives f for T = | 
and \ for T=f. In the following, A^ is the angular 
momentum part of the crossing matrix, given by 
Eqs. (3.14) and (3.17). Thus (3.28) gives 

X{<0i-(g2,giMi21fe^)+^i+(g2Jgi)^221(v/)} 

X lm/p , , ^ ) , (3.30) 

where the 4, 1 standing in front refer to isospin \ and f, 
respectively. The largest coefficient is A12, so we expect 
the P2(#)$i- angular factor to be the decisive one. (The 
static values for V —\ are f and | ; the ratio A12/A22 is 
substantially larger in the exact expression.) Using the 
definitions (2.19) and (2.20), Appendix A, one finds 

P2(x)Si-(q24i) = (7/35) ̂ ( ^ M i H • • • , (3.31) 

P2(x)3i+(q24i) = (2/S5)S^(q2Ai) 
+ (9/35)<03+(g2,gi)+-", (3.32) 

where H indicates contributions to p waves. Thus 
for F5/2 we obtain the energy-dependent crossing 
coefficient 

r3_=(7^1 2+2^2 2) /35, (F5/2) (3.33) 

and for F7/2 
r 3 + =9A 22/35, (r7/2). (3.34) 

The "static" values A12
s=%, A 22

5=4 give r3_= 10/35 
and T 3+—3/35 for F5/2 and F7/2, respectively. Thus we 
obtain the contribution of P33 exchange to the F states: 

\l/\6irk2/ J S A 2k2 )\k') 

Xr 8 ± (v , ) Im/p I I (y ) . (3.35) 

For the static values of r3±5 the ratio of (attractive) 
forces in the F states in Fu:F17:FZb:F^=4:0:12:10:3, 
so that the Fu force is by far the most significant one 
induced by P33 exchange. 

To make clear the pattern of forces we consider 
another case in detail, the contribution of Dn exchange 
(the 600-MeV resonance) to the F states. Here the Qi 
term is relevant: 

('SMv0 
X{^ii52-(g2,gi)+^2i (02+(g2,gi)}Im/2)13(/). (3.36) 

(The static values of A for V=2 are Aus=—\ and 
A 215=|.) We can use the general formulas 

Pi(*)4(i-i)_(&,$i) = [ (*- D / ( 2 / - l)]^-(<Mi) 
+ •••, (3.37) 

P I ( * ) 5 ( W ) + ( M I ) = C 1 / ( 4 P - 1 ) I ^ . - ( ^ I ) 

+/(2Z-l)^+(<Mx)]+--- (3.38) 

(where + • • • indicates the noncontributing terms of 
low /) to obtain 

P^*) <J2-(<Z2,<Zi) = (14/35) <J3-(<Z2,<Zi)+ • • •, (3.39) 

Pl(x)g2+(q2,qi)= (1/35)^3- (Mi) 
+ (lS/3S)^8+«2,3i)H , (3.40) 

which yield the crossing coefficients 

r ^ = ( 1 4 4 n + i 4 2 i ) / 3 5 (F5/2), (3.41) 

I V = 15^2i/35 (F7/2). (3.42) 

The "static" values of r8±* are r 3 _ d = - 2 / 3 5 , r3+
d 

= 15/35. In this approximation the ratio of forces 
FIB:Fu\Fn:Fzi) is -2 :15:4 : - 3 0 . The result for Du 

exchange in the F states is thus summarized by 

(' V- /W.^=YiY 
\-2/2wk2J \ 2k2 A * ' / 

Xr 3 ±
r fIm/D l 3( / ) . (3.43) 

From the preceding examples one can see some simple 
rules. The isospin crossing matrix shows that exchange 
of a r = f object gives primarily a T=\ force; similarly 
T=§ is favored by exchange of T—J. A similar situation 
holds within the set of states of the same /: the off-
diagonal elements (A 21 and A i2) dominate so that 
exchange of an object with spin and orbital momentum 
"parallel" induces the strongest force in the uanti-
parallel" configuration and vice versa. Putting together 
the above considerations, one arrives at the bootstrap 
situation where the exchange of T=J , j—l—^ helps 
create a JH=§, / = H - i state, the exchange of which 
enhances the T=%, J=l—^ state. The case of V<l is 
slightly more complicated. First there is a factor 
(— \)l~v from the expansion of the denominator (u'—u), 
which factor causes an alteration between repulsion 
and attraction. If a state of J=l+% is exchanged, the 
behavior is determined mainly by Pz_z> (#)$;/_ because 
of the dominance of An relative to ^22. From Eqs. 
(3.31) and (3.39) one sees examples of the way Pi-vQv-
contains mainly $*_. Similarly when j—l—\ is ex
changed the resulting amplitude is principally deter
mined by Pir-vQv+y as A21 dominates An. As in the 
special cases of Eqs. (3.32) and (3.40), Pi-V$v+ gives 
substantially more $i+ than $*_. Thus the large forces 
due to exchange occur in the states of oppositely 
directed isospin vectors and angular momentum 
vectors; the sign of the force is determined by the 
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coefficient (— l)'-1' in the "multipole expansion" of the 
"propagator" (u'—u)~l, except when T=*\ is ex
changed, in which case the sign is opposite in the 
T—\ is exchanged, in which case the sign is opposite in 
the r = | state. The following formulas are useful: 

Pj(*)5t-(&4i) = 

-P»(*)5n-(<Mi) = 

3/(/+l) 
S 1.1+2)-+• 

2(21+1) (21+3) 

3(/+l) 

2(2/+l)(2/+3)(2M-5) 

X^(«+2)-+2^)(J+2)+} + 

(3.44) 

{(21+1) (1+2) 

(3.45) 

dropping additional terms containing gi± and ${I~Y>± 
contributions. 

To obtain a compact notation, we observe that the 
exchange contributions can all be written in the form 

1 /' / sf~Uo\/k\21' 
£ ds'Qu\l+ )(-) 
v 2irk2 J \ 2k2 Ak'/ 

XTllv(s,s,)lmfv(s
,)) (3.46) 

where the index JU signifies Zdb| and the isospin of the 
state of interest [cf. Eq. (3.24)] but the v sum runs 
over the various /' terms contributing, and includes the 
information of Z'zb§ and isospin. The Y^s/) includes 
the T's defined in Eqs. (3.33) and (3.34), (3.41) and 
(3.42), e.g., and also contains the factor {—\)l~v 

X[2(/— 0 + 1 ] a s well as the appropriate component 
of the isospin crossing matrix. Explicitly IV is given by 

\v=(-)l-l'{2l~2V+\)M»vi:«Al,
av(s/) 

(3.47) 

In all numerical calculations we have taken into account 
the energy dependence of the FM„ coefficients. For 
illustration we write out the result for the F15 state, 
including the Born terms, P33 and Du exchange and the 
F-wave "bootstrap": 

1 

1 1 r ds' /k\* 

-. h 4 z ) Im/'"M 

L ds'Q0{ H 
-Mo\ 

- M i 
2P I 

Xlmf,(s')+ / dSQj 1 + )T(Fu',P. 
2TWJ \ 2k2 / 

x(-) Im/P33(/)+ [ds>Q1(l+— 
\kf/ 2wk2J \ 2k 

/ k \ 4 

XT(Fn;Dlz)(—) ImfDu(s
f). (3.48) 

The sum over v in Eq. (3.48) runs over the four F 
states. The "stat ic" values are A u= 32/21, A13= —4/21, 
i 4 i a = - 8 / 2 1 , . 4 n = l / 2 1 , T(FU^) = 40/21, r ( F « A > ) 
= - 2 / 3 5 . 

IV. FORCES DUE TO EXCHANGE OF 
NUCLEONIC STATES 

In the preceding section we obtained an approximate 
system of coupled partial-wave dispersion relations. 
With an assist from experiment these equations can be 
decoupled by inspection, i.e., the qualitative pattern 
of forces coincides so completely with the experimental 
results that one has confidence that representing the 
crossed channel by empirical results (the energy, width, 
and quantum numbers of each resonance) will be 
sensible. By virtue of its small mass, the nucleon 
occupies a critical place in the sequence of nucleonic 
states. As discussed in Sec. I l l , the strongest attractive 
forces due to nucleon exchange occur in P33, F37, 
#3,11'•*, i-e., in the states of "stretched" isospin, 
angular momentum configurations of Al = 2 . Likewise 
strong relatively long-range repulsive forces are induced 
in P35, £39, • • •. The well-known theory of the Pn 
resonance is especially simple in that the contributing 
force is primarily due to one process, nucleon exchange, 
though in the usual approach21 the effects of short-range 
forces are lumped into one adjustable constant, the 
high-energy cutoff. The "reciprocal bootstrap" relation 
advocated by Chew,11 whereby P33 exchange generates 
nucleon-sustaining forces in the P n state is the crucial 
notion which we here generalize to the entire set of 
(j,l,T) states. The first step was the recognition that 
the qualitative character of the static ^-wave bootstrap 
generalizes to arbitrary /, i.e., the exchange of P = J , 
j — \ — \ induces T~f, / = / + 2 and vice versa.9 This was 
done within the heavy mass approximation [cf. Eq. 
(2.28)] but as shown in Sec. I l l the kinematical 
corrections do not change the qualitative conclusions 
regarding the significant couplings among states of the 
same /. 

Thus for alternate I the bootstrap mechanism (we 
reserve this appellation for the mutual influence of 
states having the same I) cooperates with the nucleon 
pole terms. The known existence of an Fn resonance at 
900 MeV thus leads one to suspect that the 1.3-BeV 
ir+--p maximum must be largely due to an F37 res
onance. The dynamical similarity of P n and P33 then 
suggest the (verified) observation that P33 exchange 
gives its strongest attractive forces to the P15 state. I t 
will be noticed that the " trivial details" of spin and 
isospin so often abused as " inessential complications" 
are in fact directly responsible for nearly everything 
that is significant and interesting in the observed 
systematic pattern of quantum numbers. Nucleon 
exchange gives a negligible force in F15 (the contrary 
was incorrectly claimed in a previous paper10) and 
P33 exchange has a negligible effect on P37. Qualitatively 
(except for the energy differences) the major features of 
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FIG. 3. The dynamical relations among the members of the 
nucleon (Pn) and isobar (P33) trajectories are shown. Each arrow 
indicates that the exchange of the state at the base of the arrow 
induces a strong attractive force in the state at the tip of the arrow. 

the above discussed resonances are invariant under 
the reflection (cf. Fig. 3) Pn <-* P33, P15 <-> P37 (and also 
Hw<-*Hni as discussed below). This "symmetry" 
corresponds to a reflection (or rotation of 180°) of 
Fig. 3 about its horizontal axis, or equivalently to an 
interchange of the nucleon and P33 trajectories. Whether 
this symmetry has any deep significance is a question 
deserving further attention. 

It is to be observed that the significant nucleonic 
exchange (we use the expression "nucleonic" in the 

3 4 5 6 
TL MeV/lOO 

FIG. 4. The "forces" in A3 due to the exchange of the states 
labeling the various curves are given in terms of an effective phase 
shift, equal to the amplitude fi divided by k. The curve labeled 
#35 shows the effect of an assumed A s state at 850 MeV with 
r = l ( r = l may over estimate this effect due to the large in
elasticity at 850 MeV). N stands for nucleon. 

generic sense, to describe all the nucleonic objects: 
nucleon and its excited states) forces giving rise to 
the P33 trajectory are due to the exchange of the states 
belonging to the nucleon trajectory and vice versa. 
The object-image relationship between exchange state 
and induced state suggests the name image resonances, 
Thus P33 is the image of Pn, which in turn is the image 
of P33. P37 is the image of Pn and P16; Pis the image of 

P33 and P37. Similarly we find Hx% to be the image of 
P33, P37 and ffan, and £T3,n to be the image of Pn, 
P15 (very weak) and #19. We call the operation of the 
mutually dependent pattern of forces a super-bootstrap 
to distinguish it from the simple bootstrap within 
states of the same /. We also think it is fitting to call the 
mutually dependent grouping of resonances on the 
nucleon and isobar trajectories a constellation of 

3 4 5 6 
T, (MeV/100) 

FIG. 5. Contributions to D33 are shown. 

resonances. Physically it seems appropriate, in view of 
the results of the proposed theory, to speak of the 
resonances on the Pn and P33 trajectories as legitimate 
"excited states" of the nucleon. 

In the present section we give the results for the 
"forces" due to the exchange of various resonances. To 
facilitate numerical work we use the sharp resonance 
approximation 

Imftis) = (TTrWr/kr)8(s-sr), (4.1) 

(deg) 

3 4 5 6 
TL (MeV/100) 

FIG. 6. Various contributions to Dn are shown. Dn was 
assumed to have a r of unity. 
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(deg) 

3 4 5 6 
T L (MeV/100) 

FIG. 7. Forces in DS5 are shown. V was taken to be unity for A3. 

where Tr is the full width, Wr the total cm . resonance 
energy, and kr the c m . resonance momentum. These 
"Born" terms are then essential ingredients for any-
complete calculation and much can be learned from 
them. For example, the effective phase shift by which 
we classify the various contributions, rises rapidly at 
about the proper energy for the ^15 and F37 states. 
7̂ 35 is (in the same approximation) weakly attractive 
while F n is quite repulsive. Thus it is quite reasonable 
to suppose, in analogy to the 3-3 resonance, that 
repeated resonance exchange will enhance Fu and 
leave Fn small, unless inelasticity drastically modifies 
the dynamics. In these calculations we have taken into 
account the exchange of the nucleon, P33, #13, ^15, 

(deg)ol 

8 10 
. L (MeV/100) 

FIG. 9. The ^35 nucleonic exchange forces are shown. 

F37, #19, and #311. The parameters used are, in the 
same order, Wr=6.72, 7.79, 10.80, 12.08, 13.58, 15.70, 
17.03 corresponding to lab energies, • • •, 190, 600, 900, 
1300, 1950, and 2400 MeV. The widths were chosen as 
follows, noting that inelasticity lowers the effective V: 
P33, r = l . l ; Dn, r = | ; Fn, T = l ; F37, r = 2; # i 9 , 
T - 0 . 7 8 ; #311, T = 0.48. We have not included the 850-
MeV shoulder because we are not sure what the assign
ment of quantum numbers is. This phenomenon, and 
the second resonance (D13) are so inelastic that we 
hesitate to make any firm commitments on the basis 
of the present theory. The omission of the 850-MeV 
object is not serious (because of its high mass and large 
inelasticity) in that few results are substantially altered 
by it. A more complete discussion is given in Sec V. 
(Also the chosen values of V for the H states may be 
too large; we have taken values greater than suggested 
by a simple subtraction from a smooth background.) 
The resultant G phases are very small when positive, or 
else are negative, consistent with the probable lack of 
resonant phenomena in the / = 4 states. The pattern of 
forces in the H states is qualitatively very similar to 
that in the F states, though the H forces seem to be 
somewhat weaker than the F forces at the corresponding 
energies of the observed resonances, largely because of 
the weakness of the H bootstrap mechanism. 

The D states are complicated by the presence of both 
attractive and repulsive forces of differing range but 
comparable absolute value. For Dn, nucleon exchange 

(deg) 

6 8 10 
TL (MeV/lOO) 

FIG. 8. The F^ nucleonic exchange forces are shown. FIG. 10. The Fn nucleonic exchange forces are shown. 
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FIG. 11. The F37 nucleonic exchange forces are shown. 

gives an unimportant contribution while P33 exchange 
gives a strong repulsion. If the shoulder at 850 MeV is 
Z>35 then the bootstrap contribution gives a short-range 
Diz attractive force that is rapidly increasing at 600 
MeV. Similarly, for D35, Fzz exchange is very small 
while N exchange gives a strong, rather long-range 
repulsion. However D\% exchange induces a short-range 
attractive force. Whether these "long-range" repulsions 
actually sharpen the resonances (the 600-MeV maxi
mum is rather narrow) or are in fact deleterious to the 
existence of resonances is not clear. There seems to be no 
escape from accounting for production amplitudes in a 
detailed way in order to understand the 600- and 850-
MeV phenomena. For Du, N exchange gives a non-
negligible attraction while Du and P33 exchange give 
small repulsions. P33 exchanges makes Z>33 repulsive 
while N and -D35 give small positive contributions. It is 
entirely possible that the (longest range) repulsions can 
be essentially neutralized by the ease with which the 
2TTN channel can be reached: the pion and nucleon can 
undergo a transition to 2TN rather than exchange a 
state obnoxious to it. In Figs. 4-7 we summarize the 
above results for the D states. It should be said that the 
exchange of Fu and P37 has a non-negligible influence 
on the D states. These results will be described elsewhere 
in an attempt to describe the 600- and 850-MeV 
phenomena. 

2 r 

FIG. 12. The Gn W«fl)̂ i 
nucleonic exchange 
forces are shown. 
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FIG. 13. The G37 nucleonic exchange forces are shown. 

The nucleonic exchange contributions to the F states 
are shown in Figs. 8-11. Especially interesting is the 
predominance of N, Fu exchange in the P37 state and 
Pzh ^37 exchange in the F15 state (cf. Fig. 3). In P35 the 
nucleonic exchange forces are of mixed character, being 
weakly attractive on the whole. The non-negligible 
nucleonic exchange forces in Fn are all repulsive. 

The results for the G states are shown in Figs. 12-15. 
The Gn state is very repulsive; G37 is also repulsive. In 
G19 weak "long-range" attractive forces due to N and 
P33 exchange are overcome by shorter range repulsive 
forces (F15 and F37 exchange) that increases rapidly 
with energy. In G39 there is a short-range attraction via 
Fu exchange that is compensated for by a longer range 
repulsion due to nucleon exchange. Clearly any maxima 
occurring in G states must have a dynamical mechanism 
different from that considered here. 

The results for the H states (Figs. 16-19) are qualita
tively similar to those obtained for the F states, 
although there are more contributions to the former. 
However the Hi9—Hni bootstrap is quite weak, because 
of the rather weak development (as compared to what 
unitarity permits) of these maxima. Thus at the posi
tions of the highest energy observed maxima the #19 
and #311 forces are somewhat weaker than those in F15 
and P37 at their respective resonance energies. Of course 
this circumstance may be responsible for the under
developed character of the newest maxima. 

12 14 16 18 
TL (MeV/100) 

20 

10 12 14 16 18 20 22 24 
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FIG. 14. The G19 nucleonic exchange forces are shown. 
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FIG. 15. The G39 nucleonic exchange forces are shown. 

We have not performed any calculations for states 
with l>5. Although the same pattern will persist at 
even higher energy the exchange forces become less 
effective and inelasticity more complete. It is not clear 
that any further variations in the total cross section 
should be observable in experiments of plausible 
accuracy. However the effects of the nucleonic exchange 
terms might be observable in large angle w—p scattering 
at high energies. 

In Fig. 20 we have summarized the nucleonic 
exchange forces for D through H waves. In this graph 
no account has been taken of the effect of V>1 states 
on / waves. 

Next we examine in more detail the analytic proper
ties of the nucleonic exchange terms, using the delta-
function approximation of Eq. (4.1). (We discuss the 
amplitudes fi/k21 as a function of s, though W= (s)1/2 is 
more convenient for actual computation, as emphasized 
by Frautschi and Walecka. Our results are easily tran
scribed to the W variable if the MacDowell symmetry25 

is invoked to define the amplitudes in the left-hand W 

TL (MeV/100) 

FIG. 16. The Hu nucleonic exchange forces are shown. 

FIG. 17. The #39 nu
cleonic exchange forces are 
shown. 

18 20 22 
TL (MeV/100) 

plane.) In this approximation the forces due to nucleonic 
exchange are represented by cuts below the threshold 
(M+ju)2 on the real axis, due to the Q functions. From 
the integral representation24 

1 fl Pn(x)dx 

2 J_i x—y 
(4.2) 

where y~ l+(sr~uo)/2k2, one sees that the amplitude 
is discontinuous for real s such that y lies between — 1 
and 1. The branch points (^=-bl) occurs for s=Q, 
co and S±} where S+= (M2-if)2/Sr and 5_= 2(M2+ix2) 
—Sr (see Table I). A qualitative difference distinguishes 

TABLE I. The positions of the cuts arising from the exchange of 
resonances of mass (S?)112 is determined by S^ [see discussion 
following Eq. (4.2)]. 

27, 
Sr 
S-, 
s„ 

190 
77.9 
25.0 
14.4 

600 
117.2 
16.6 

-24.9 

850 
141.5 
13.8 

-49.1 

900 
146.0 
13.4 

-53.7 

1300 
184.4 
10.6 

-92.1 

1950 
247.4 
7.9 

-155.1 

2400 
290.0 
6.7 

-197.7 

the cases sr^2(M2+fi2). For sr<2(M2+fx2) one has 
cut from 5_ to S+ and a second cut from — 00 to 0, as in 
the case of the well-known nucleon exchange contribu
tion. For sr>2(M2+fM2) the two cuts run from — 00 to 
s- and from 0 to s+ (cf. Fig. 21). In Fig. 22 we have 
plotted k2(s), and y(s) for P33 and Fro exchange to 
illustrate both situations. In constructing such figures it 
is useful to use y(± QO) = y(s+) = — y(sJ) — 1, y[_(M+n)2 

+ ] = y [ ( i f - M ) 2 ~ ] = + ^ , yKM+fxy-^yKM-tx)2 

+ 3 = — °° and 

y(0) = 2[sr-2(M*+rf)l/(M*-v*)* (4.3) 

As a function of y, ImQn{y)—(j/2)Pn(y)J as is seen 

FIG. 18. The JBTI.II nu
cleonic exchange forces are 
shown. 

25 S. W. MacDowell, Phys. Rev. 116, 774 (1960). 
16 18 20 22 

TL (MeV/100) 

jBTi.ii
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FIG. 19. The tf8.11 
nucleonic exchange 
forces are shown. 
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from Eq. (4.2). From this point the calculation is of 
the standard N/D type, easily soluble in the pole 
approximation. 

Because of the extensive numerical work involved we 
have decided to defer the discussion of the calculations 
now in progress to a subsequent paper. Thus the results 
shown in Figs. 4 to 20 are "raw theoretical data," 
not yet in shape to be confronted with experiment. 
[That resonances occur in the proper F states {Fi$ and 
FZT) at some energy is almost beyond doubt in view of 
the rapidity of increase of the exchange terms at high 
energy.] However the qualitative features of our results 
should be useful in selecting a preferred set among 
competing phase shift solutions. 

As an example, we discuss recent Berkeley results26 

near the second resonance. It was hoped that polariza
tion measurements would provide a definitive deter
mination of the quantum numbers of this maximum. 
However, equally good fits were obtained with either 

FIG. 20. The total "forces" due to exchange of nucleonic states 
are shown for D through H states. Although this figure obscures 
the fact that each curve receives contributions of differing range, 
the general pattern is significant in showing the emergence of 
the resonance states of even parity. For comparison the Pn 
"force" due to nucleon exchange is shown. The P n (attractive) 
force arising from Pn exchange is not shown, but would lie 
above the JT33 curve. 
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FIG. 21. The left-hand cuts in the s plane due to (a) P33 and (b) 
F15 exchange are shown [the sharp resonance approximation, 
Eq. (4.1), has been used]. 

Dn or Pu for the 600-MeV resonance. For both solutions 
the change of Z>35 from strong repulsions at 523 and 572 
MeV to a weak attraction at 689 MeV is consistent 
with the effect of Dn exchange described above. 
(In fact, the T=% D and F waves are nearly the same 
for both solutions.) Besides the theoretical reasons for 
preferring Dn to Pu (and also considering the photo-
production analysis27 for the same purpose) the Pi3 
solution has DM rather repulsive at 523 MeV, surprising 
in view of the substantial (theoretical) attraction due to 
nucleon exchange. The T—^F waves provide important 
clues. The Du solution has a large positive Fu phase 
and a small Fn phase shift, in agreement with the 
baryonic exchange forces giving strongest attractive 
forces in Fu and moderate repulsions in Fu. On the 
other hand the P13 solution gives large positive Fn 
phase shifts at all three energies and smaller Fn phase 
shifts. In making these comparisons one should bear in 
mind the qualitative influence of the neglected but not 
insignificant contributions due to p exchange, and 
T~J=QTW exchange. The effect of the latter is to give 

26 R. D. Eandi, Lawrence Radiation Laboratory Report, 
UCRL-10629 (unpublished). 

2 0 [ 4 0 6 0 8 0 100 

[M-fihz7Z (M+/i)2= 59.60 

FIG. 22. The cm. momentum squared k2, and the variable y 
[for P33 and Fu exchange, of Eq. (4.2)] are given as a function of 
s. S± locate branch points occurring for y = ± l . y — 0 and 00 are 
also branch points. 

27 R. F. Peierls, Phys. Rev. 118, 325 (1960). 
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an attraction in all states, while exchange enhances 
T~\ twice as much as it diminishes T= § (Appendix B). 
Another virtue of the Dn solution is the substantial P\\ 
phase shift, possibly associated with the maximum in 
TT-+P-+A+K0 at 900 MeV.13 Previously it was 
suggested10 that the p exchange force, which is fairly 
substantial in this state, might be important in generat
ing this maximum. Numerical evaluation19 indicates 
that P33 exchange is substantially larger than both the 
p exchange and the repulsive N exchange term, at high 
energy. Although more work is in order concerning the 
origin (and even the assignment of quantum numbers) 
of this maximum it is very appealing that this object 
be Puy induced by P33 exchange. In this case one has 
the beginning of a second trajectory with the nucleon 
quantum numbers. Is it possible that another P33 
resonance lies obscured by the broad maximum we have 
previously associated solely with the F37 state? 

V. DISCUSSION 

In the previous sections the forces due to the exchange 
of nucleonic states have been analyzed. I t was found 
that a self-sustaining dynamical entity, a constellation 
of resonances, composed of two Regge trajectories 
originating in the nucleon and P33 resonances was 
suggested by the structure of the crossing matrix. 
Moreover the members of one trajectory are "images" 
of the resonances comprising the other trajectory, as 
discussed in Sec. IV. Although the involved numerical 
calculation of the resonance energies has not yet been 
completed, it was found that the states in which 
resonances are expected surmount the centrifugal 
barrier at roughly the proper energies and in the right 
order (e.g., Fn precedes F3 7 as the energy is increased). 
Thus the energy spacing between the members of the 
trajectories, or equivalently the slope of the trajectories, 
is qualitatively correlated with the range of forces due to 
the exchange of baryonic objects. As we do not expect to 
achieve especially accurate results in the calculation of 
resonance energies because of divergences in the N/D 
solutions we cannot understand why the slopes should 
be so remarkably constant. For instance As—lOOjtt2 for 
the three members of the nucleon trajectory and about 
106JU2 for the P33 trajectory. The principal inadequacy 
of the analysis presented above resides in the assumed 
unimportance of inelasticity as a generator of res
onances. As already remarked such a position cannot be 
maintained for the 2nd resonance and the 850-MeV 
shoulder. Similarly the influence of inelasticity on the 
constellation will probably be significant though we 
believe it to be a secondary consideration. Thus it may 
be significant that the Fn resonance lies near the 
threshold for p production and the Hi$ maximum near 
the f° threshold. Although the precise resonance 
energies may thus be influenced by inelastic thresholds 
we do not agree with the position maintained by many 
people to the effect that the even parity higher res

onances are "cusps" or sundry threshold effects-
Rather we claim that the constellation exhibits and 
interprets in a systematic way the compellingly 
beautiful empirical regularity of the excited states of 
that most fundamental object, the nucleon. 

While the attractive isospin-J forces caused by p 
exchange and production no doubt cause the T=^ 
resonances to develop at a lower energy than would be 
the case with purely nucleonic forces we view the 
p admixture in much the same way that proponents of 
the eightfold way regard the "symmetry-breaking" 
terms. (It is possible, though, that there is a subtle 
conspiracy wherein all these forces cooperate in a 
simple way as yet undiscovered.) 

As already mentioned it appears that one dare not 
neglect the influence of the exchange of nucleonic 
states on the production process. We now discuss 
qualitatively the D-state forces due to A7", P33 and D 
exchange. The situation is considerably more intricate 
than might be gathered from the discussion of a 
previous paper,10 in which we perhaps overemphasized 
the "filtering" action of the Z>-wave crossing matrix. P33 
exchange creates a moderately strong repulsion in Dn. 
If the shoulder is £35 then there is a substantial short-
range attraction as well. The attraction in Dn due to 
nucleon exchange is helpful in understanding the 
positive value of the phase shift in this state. Both Dr0 

and D33 receive strong repulsions due to N and P33 
exchange. This is most likely the reason why the w+p 
cross section is so small in the natural domain of the D 
waves (around 600-MeV pion lab energy). However at 
about 800 MeV the cross section suddenly increases 
giving rise to the shoulder predicted in an earlier paper.28 

In that work #33 was suggested on the basis of (a) the 
anomalously small charge exchange 7r~+p—>Tr°+n 
near the second resonance, which indicated substantial 
interference with the Dn state on the basis of a simple 
resonance model, and (b) the small size of the shoulder 
which seemed to rule out 7 = f unless the latter were 
almost completely absorbed. I t now appears that the 
absorption is very strong indeed in the shoulder, so 
that J = f cannot be so easily disposed of. Moreover 
the simple resonance model [point (a)] is probably not 
too reliable since so many states seem to be significant. 
I t was subsequently pointed out29 that #33 would be 
generated if p production (threshold: 890 MeV) had a 
significant effect. On the other hand, one can make a 
good case for D^5. As the lab energy is increased to 
850 MeV the short-range attraction due to Dn exchange 
suddenly sets in. The longer range repulsion due to N 
exchange possibly confines the pion to shorter distances, 
enhancing the amount of inelasticity. (Experimentally30 

it appears that the most interesting feature of the ir—p 
angular distribution near the third resonance, the 

28 P. Carruthers, Phys. Rev. Letters 4, 303 (1960). 
29 P. Carruthers, Phys. Rev. Letters 6, 567 (1961). 
30 J. A. Hellard, T. J. Devlin, D. E. Hagge, M. J. Longo, 

B. J. Mover, and C. D. Wood, Phvs. Rev. Letters 10, 27 (1963). 
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TABLE II . The angular distribution for the reaction T+N —»N* 
+7r is given for various channels. The notation Lj means that the 
incident TTN channel of angular momentum / and orbital momen
tum L undergoes a transition to the iV*—ir configuration of 
orbital momentum /. X is the cosine of the production angle in the 
total cm. system. 

S1/2 —> d 
Pm -> p 
Pz/2 —> P 
Pm-*f 
Z)3 '2 - • S 

const. 
const. 
7 -6X 2 

1+2X2 

const. 

Z>3/2 —* d 
Dm -» d 
Dm -> g 
Fm-*P 
F*i2—*f 

const. 
1+10X2-10X4 

13-10X2+45X4 

1+2X2 

7+34Z2-25X4 

"backward bump," requires a substantial interference 
between resonant Fn and attractive D5/2.) Moreover 
one can entertain the thought that the 850-MeV 
shoulder is associated with w+N-* PZZ+T through 
the F35 channel. The rapid rise occurs at a natural 
F-wave threshold energy. (It will be recalled that the 
nucleonic-exchange forces are weakly attractive in 
F35.) The F35 assignment has been advocated by 
Peierls.31 In this regard Peierls has emphasized32 the 
importance of analyzing production data in terms of 
the angular distribution for TT+N —»N*+w. The one 
example known33 for ir++p —> ir^+p+ir0 at 820 MeV 
gives a distribution of the form 4.1 — 10.5 cos0+8.7 
cos20. This seems to favor Fzz —> P33+^-wave pion, 
which gives a distribution proportional to 1+2 cos20. 
The point here is that all other states (leading to s-
and p-w&ve recoil pions) give negative coefficients for 
the cos20 term.32 For d (or higher) wave recoil pions 
(e.g., A>/2 —» Pz/2+d wave) large cos40 terms appear. 
Of course complicated interference effects can occur 
but the analysis of the data in this manner might prove 
very informative. In Table II we give some of the 
relevant angular distributions. This table was computed 
for the author by L. M. Simmons and agrees with 
unpublished results of Peierls.32 
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APPENDIX A: USEFUL LEGENDRE IDENTITIES 

In this appendix we summarize the identitites needed 
for the partial-wave reduction in Sec. III. Identities 
1-4 are the common ones. The relations between 
Pn{oo') and Pm(x) (x'=l;x+a) can be proved simply 
from Rodriguez' formula, e.g., 

^Pi(x)=g/(2i+i)2Pi-i(x) 
+[(Z+l)/(2/+l)]P,+ 1(x) , (Al) 

31 R. F. Peierls, Phys. Rev. Letters 5, 166 (1960). 
32 R. F. Peierls (private communication). 
33 R. Barloutaud, C. Choquet, C. Gensollen, J. Heughebaert, 

A. Leveque, J. Meyer, and G. Viale, Proceedings of the Aix-en-
Provence International Conference on Elementary Particles, edited 
by E. Cremieu-Alcan, P. Falk-Vairant, and O. Lebey (Centre 
d'Etudes Nucleaires de Saclay, Seine et Oise, 1961), Vol. 1, p. 27. 

xPl'(x) = [l/(2l+\)-]Pl^(x) 
+[( /+l) / (2Z+l)] iV 1 ' (*) , (A2) 

xPl'(x) = lPi(x)+PU(x), (A3) 

Pl{x) = l\/{21+\)JP^{%)-Pl^(x)-}, (A4) 

PiW) = ?Pi(*)+ (21- l ^ P w W 
+ (2J-3){"a(fo- l)Pi_«(*)+ •••,• (A5) 

dPl(x')/dx= ?+1(2l+l)Pi(x)+ (4/2-1) 

X « £ ' P H ( * ) + - , (A6) 

PI(X)PI(X) = [3Z(J-1)/2(4/2- l)]Pz_2(x) 
+ [ 3 (1+1) (l+2)/2 (21+1) (2l+3)lPm(x) 
+£l(l+l)/(2l-l)(2l+3)2Pl+2(x), (A7) 

P2 (x)Pi' (x) = 131(1+1)/2 (21+1) (2l+3)-]Pw' (x) 
+[3l(l+l)/2(W-l)-]Pl_2'(x) 
+l(2P+3P-5l-3)/(W-l)(2l+3)'] 

XP/(x). (A8) 

APPENDIX B: ESTIMATE OF 9-EXCHANGE 
CONTRIBUTION 

For a simple estimate we use perturbation theory 
with the interaction Hamiltonian 

H'^U^-hA^+f^Q"' iXdJ, (Bl) 
where j>", $, and rp are, respectively, the p, pion, and 
nucleon fields. The vectorial symbols refer to isospace. 
The conventional transition matrix for scattering from 
h to k' is then 

M u(p')(k+k')-yu(p) 
w (J\2') 

(4:EpEp,mo>k>)112 {k-k')2-m2 ' 
where mp is the p mass and p and pf label the initial and 
final nucleon four-momentum. The amplitude B in 
Eq. (2.4) for isospin § is then (Bz/2= -§£1 /2) 

^ 1 / 2 = / P M W W - 0 . (B3) 

The corresponding phase shifts for isospin \ are then 
(y=l+m2/2k2) 

5z±1/2= (y2/^kW)[_(E+M)(W-M)Ql(y) 
+ (E-M)(W+M)Ql±1(y)l, (B4) 

where yP
2=fPNNfPinr/^ as estimated from the width of 

the p, and also from low-energy pion nucleon scattering, 
is about 2.34'35 For reference we also give the differential 
cross section in isospin f following from (B2): 

da1'2 {(s-M2-n2)2+t(s-M2)} 
= A / 4 (TtC\ 

34 J. J. Sakurai, in the International Conference on High-Energy 
Nuclear Physics, Geneva, edited by J. Prentki (CERN Scientific 
Information Service, Geneva, Switzerland, 1962), p. 176. 

35 J. Hamilton, P. Menotti, G. C. Oades, and L. L. J. Vick, 
Phys. Rev. 128, 1881 (1962). 
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[Using (B4) and <yP
2=2 we find for Du, 5=0.38°, 

0.51°, 0.86°, 1.31° at 300, 400, 500, and 600 MeV. For 
Z?i5 one finds 0.22°, 0.25°, 0.4°, 0.6°, 0.84°, 1.1°, 1.37° 
at 300, 400, 500, 600, 700, 800, 900 MeV. For Fn 8 is 

0.36°, 0.50° and 0.68° at 700, 800, and 900 MeV. 
For # i 9 S is 0.37°, 0.56° and 1.05° at 1700, 2000, and 
2500 MeV. The same parameters give for Pu 5=12° 
at 900 MeV.] 
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Effect of the Baryon Excited States on the N— A and A —A Forces 
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The 2V-A and A-A potentials caused by the exchange of two pions are calculated in the static theory, taking 
into account the resonance Fi* in the w-A system and the (3-3) resonance in the w-N system. The recoil of 
the baryons is included in an approximate way. It is shown that the presence of these resonances diminishes 
the spin-dependent part of the central potential and the tensor potential, and increases the spin-independent 
part of the central potential. The triplet potential turns out to be slightly stronger than the singlet potential 
at large distances, and slightly weaker than it closer in. If the resonances are omitted, the triplet potential 
is the stronger over the whole range. This last result is in mild disagreement with other work. Its relation 
to the choice of a one-channel or two-channel formalism is discussed. 

1. INTRODUCTION 

SOME experimental evidence on hypernuclei and on 
double-hypernuclei is now available and some phe-

nomenological analyses of this evidence have been made 
with a view to determining the nature of the N—A1 and 
A—A forces.2 

Various workers3 have estimated the two-pion ex
change contributions to these potentials using meson 
theory. However, no account seems yet to have been 
given of the effect upon these forces produced by the Fi* 
resonance in the ir—A system and the 3 — 3 resonance in 
the TT—N system together.4 The main purpose of this 
paper is to estimate this effect. 

We shall take the 2—A parity to be even, as has now 
been almost conclusively established/ and we shall 
make the experimentally probable assumption that the 
Fi* resonance at 1385 MeV in the w—A system is a P3/2 
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state,6 having the same mechanism as the I=J= 2 reso
nance in the 71— N system. The Chew-Low theory for 
the pion-nucleon interaction can then be extended in a 
straightforward way to the pion-hyperon interaction, 
and the TV—A and A—A potentials can be calculated by 
the method given by Miyazawa,7 a method in which the 
resonances of the T—N and w—A systems can be 
treated. 

It has been pointed out by Charap and Fubini and by 
Gupta8 that the static limit of the two-pion exchange 
potential is not well defined. The difficulty comes from 
the fact that, when the two-pion exchange potential 
V(x) is written in the form 

V(x)--
• / 

dm2p (m2) exp (—mx)/x, (1.1) 

the inverse baryon mass expansion of the spectral func
tion p(m2) does not converge at the lower mass end 
(m —> 2mT). The relativistic effect is therefore important 
in the asymptotic region (x —><*>)? where the static limit 
would appear to be most justified. Akiba9 has examined 
the accuracy of the inverse nucleon mass expansion, 
showing that this expansion provides us with a reason
able numerical approximation. Our calculation will be 
meaningful except for extremely large distances where 
I V(x)\ will be negligibly small, and of course for very 
short distances. 
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